Paper Reading AI Learner

Computational Analysis of Deformable Manifolds: from Geometric Modelling to Deep Learning

2020-09-03 16:50:48
Stefan C Schonsheck

Abstract

Leo Tolstoy opened his monumental novel Anna Karenina with the now famous words: Happy families are all alike; every unhappy family is unhappy in its own way A similar notion also applies to mathematical spaces: Every flat space is alike; every unflat space is unflat in its own way. However, rather than being a source of unhappiness, we will show that the diversity of non-flat spaces provides a rich area of study. The genesis of the so-called big data era and the proliferation of social and scientific databases of increasing size has led to a need for algorithms that can efficiently process, analyze and, even generate high dimensional data. However, the curse of dimensionality leads to the fact that many classical approaches do not scale well with respect to the size of these problems. One technique to avoid some of these ill-effects is to exploit the geometric structure of coherent data. In this thesis, we will explore geometric methods for shape processing and data analysis. More specifically, we will study techniques for representing manifolds and signals supported on them through a variety of mathematical tools including, but not limited to, computational differential geometry, variational PDE modeling, and deep learning. First, we will explore non-isometric shape matching through variational modeling. Next, we will use ideas from parallel transport on manifolds to generalize convolution and convolutional neural networks to deformable manifolds. Finally, we conclude by proposing a novel auto-regressive model for capturing the intrinsic geometry and topology of data. Throughout this work, we will use the idea of computing correspondences as a though-line to both motivate our work and analyze our results.

Abstract (translated)

URL

https://arxiv.org/abs/2009.01786

PDF

https://arxiv.org/pdf/2009.01786.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot