Paper Reading AI Learner

Stem-leaf segmentation and phenotypic trait extraction of maize shoots from three-dimensional point cloud

2020-09-07 13:58:09
Chao Zhu, Teng Miao, Tongyu Xu, Tao Yang, Na Li

Abstract

Nowadays, there are many approaches to acquire three-dimensional (3D) point clouds of maize plants. However, automatic stem-leaf segmentation of maize shoots from three-dimensional (3D) point clouds remains challenging, especially for new emerging leaves that are very close and wrapped together during the seedling stage. To address this issue, we propose an automatic segmentation method consisting of three main steps: skeleton extraction, coarse segmentation based on the skeleton, fine segmentation based on stem-leaf classification. The segmentation method was tested on 30 maize seedlings and compared with manually obtained ground truth. The mean precision, mean recall, mean micro F1 score and mean over accuracy of our segmentation algorithm were 0.964, 0.966, 0.963 and 0.969. Using the segmentation results, two applications were also developed in this paper, including phenotypic trait extraction and skeleton optimization. Six phenotypic parameters can be accurately and automatically measured, including plant height, crown diameter, stem height and diameter, leaf width and length. Furthermore, the values of R2 for the six phenotypic traits were all above 0.94. The results indicated that the proposed algorithm could automatically and precisely segment not only the fully expanded leaves, but also the new leaves wrapped together and close together. The proposed approach may play an important role in further maize research and applications, such as genotype-to-phenotype study, geometric reconstruction and dynamic growth animation. We released the source code and test data at the web site this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2009.03108

PDF

https://arxiv.org/pdf/2009.03108.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot