Paper Reading AI Learner

Transparency and granularity in the SP Theory of Intelligence and its realisation in the SP Computer Model

2020-09-07 18:31:12
J Gerard Wolff

Abstract

This chapter describes how the SP System, meaning the SP Theory of Intelligence, and its realisation as the SP Computer Model, may promote transparency and granularity in AI, and some other areas of application. The chapter describes how transparency in the workings and output of the SP Computer Model may be achieved via three routes: 1) the program provides a very full audit trail for such processes as recognition, reasoning, analysis of language, and so on. There is also an explicit audit trail for the unsupervised learning of new knowledge; 2) knowledge from the system is likely to be granular and easy for people to understand; and 3) there are seven principles for the organisation of knowledge which are central in the workings of the SP System and also very familiar to people (eg chunking-with-codes, part-whole hierarchies, and class-inclusion hierarchies), and that kind of familiarity in the way knowledge is structured by the system, is likely to be important in the interpretability, explainability, and transparency of that knowledge. Examples from the SP Computer Model are shown throughout the chapter.

Abstract (translated)

URL

https://arxiv.org/abs/2009.06370

PDF

https://arxiv.org/pdf/2009.06370.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot