Paper Reading AI Learner

Methods of the Vehicle Re-identification

2020-09-14 18:50:50
Mohamed Nafzi, Michael Brauckmann, Tobias Glasmachers

Abstract

Most of researchers use the vehicle re-identification based on classification. This always requires an update with the new vehicle models in the market. In this paper, two types of vehicle re-identification will be presented. First, the standard method, which needs an image from the search vehicle. VRIC and VehicleID data set are suitable for training this module. It will be explained in detail how to improve the performance of this method using a trained network, which is designed for the classification. The second method takes as input a representative image of the search vehicle with similar make/model, released year and colour. It is very useful when an image from the search vehicle is not available. It produces as output a shape and a colour features. This could be used by the matching across a database to re-identify vehicles, which look similar to the search vehicle. To get a robust module for the re-identification, a fine-grained classification has been trained, which its class consists of four elements: the make of a vehicle refers to the vehicle's manufacturer, e.g. Mercedes-Benz, the model of a vehicle refers to type of model within that manufacturer's portfolio, e.g. C Class, the year refers to the iteration of the model, which may receive progressive alterations and upgrades by its manufacturer and the perspective of the vehicle. Thus, all four elements describe the vehicle at increasing degree of specificity. The aim of the vehicle shape classification is to classify the combination of these four elements. The colour classification has been separately trained. The results of vehicle re-identification will be shown. Using a developed tool, the re-identification of vehicles on video images and on controlled data set will be demonstrated. This work was partially funded under the grant.

Abstract (translated)

URL

https://arxiv.org/abs/2009.06687

PDF

https://arxiv.org/pdf/2009.06687.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot