Paper Reading AI Learner

Attention Flows: Analyzing and Comparing Attention Mechanisms in Language Models

2020-09-03 19:56:30
Joseph F DeRose, Jiayao Wang, Matthew Berger

Abstract

Advances in language modeling have led to the development of deep attention-based models that are performant across a wide variety of natural language processing (NLP) problems. These language models are typified by a pre-training process on large unlabeled text corpora and subsequently fine-tuned for specific tasks. Although considerable work has been devoted to understanding the attention mechanisms of pre-trained models, it is less understood how a model's attention mechanisms change when trained for a target NLP task. In this paper, we propose a visual analytics approach to understanding fine-tuning in attention-based language models. Our visualization, Attention Flows, is designed to support users in querying, tracing, and comparing attention within layers, across layers, and amongst attention heads in Transformer-based language models. To help users gain insight on how a classification decision is made, our design is centered on depicting classification-based attention at the deepest layer and how attention from prior layers flows throughout words in the input. Attention Flows supports the analysis of a single model, as well as the visual comparison between pre-trained and fine-tuned models via their similarities and differences. We use Attention Flows to study attention mechanisms in various sentence understanding tasks and highlight how attention evolves to address the nuances of solving these tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2009.07053

PDF

https://arxiv.org/pdf/2009.07053.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot