Paper Reading AI Learner

The Next Big Thing in Unsupervised Machine Learning: Five Lessons from Infant Learning

2020-09-17 18:47:06
Lorijn Zaadnoordijk, Tarek R. Besold, Rhodri Cusack

Abstract

After a surge in popularity of supervised Deep Learning, the desire to reduce the dependence on curated, labelled data sets and to leverage the vast quantities of unlabelled data available recently triggered renewed interest in unsupervised learning algorithms. Despite a significantly improved performance due to approaches such as the identification of disentangled latent representations, contrastive learning, and clustering optimisations, the performance of unsupervised machine learning still falls short of its hypothesised potential. Machine learning has previously taken inspiration from neuroscience and cognitive science with great success. However, this has mostly been based on adult learners with access to labels and a vast amount of prior knowledge. In order to push unsupervised machine learning forward, we argue that developmental science of infant cognition might hold the key to unlocking the next generation of unsupervised learning approaches. Conceptually, human infant learning is the closest biological parallel to artificial unsupervised learning, as infants too must learn useful representations from unlabelled data. In contrast to machine learning, these new representations are learned rapidly and from relatively few examples. Moreover, infants learn robust representations that can be used flexibly and efficiently in a number of different tasks and contexts. We identify five crucial factors enabling infants' quality and speed of learning, assess the extent to which these have already been exploited in machine learning, and propose how further adoption of these factors can give rise to previously unseen performance levels in unsupervised learning.

Abstract (translated)

URL

https://arxiv.org/abs/2009.08497

PDF

https://arxiv.org/pdf/2009.08497.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot