Paper Reading AI Learner

Consistency Regularization with High-dimensional Non-adversarial Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation

2020-09-18 03:26:44
Kaihong Wang, Chenhongyi Yang, Margrit Betke

Abstract

Unsupervised domain adaptation for semantic segmentation has been intensively studied due to the low cost of the pixel-level annotation for synthetic data. The most common approaches try to generate images or features mimicking the distribution in the target domain while preserving the semantic contents in the source domain so that a model can be trained with annotations from the latter. However, such methods highly rely on an image translator or feature extractor trained in an elaborated mechanism including adversarial training, which brings in extra complexity and instability in the adaptation process. Furthermore, these methods mainly focus on taking advantage of the labeled source dataset, leaving the unlabeled target dataset not fully utilized. In this paper, we propose a bidirectional style-induced domain adaptation method, called BiSIDA, that employs consistency regularization to efficiently exploit information from the unlabeled target domain dataset, requiring only a simple neural style transfer model. BiSIDA aligns domains by not only transferring source images into the style of target images but also transferring target images into the style of source images to perform high-dimensional perturbation on the unlabeled target images, which is crucial to the success in applying consistency regularization in segmentation tasks. Extensive experiments show that our BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks: GTA5-to-CityScapes and SYNTHIA-to-CityScapes.

Abstract (translated)

URL

https://arxiv.org/abs/2009.08610

PDF

https://arxiv.org/pdf/2009.08610.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot