Paper Reading AI Learner

Clustering COVID-19 Lung Scans

2020-09-05 00:21:13
Jacob Householder, Andrew Householder, John Paul Gomez-Reed, Fredrick Park, Shuai Zhang

Abstract

With the recent outbreak of COVID-19, creating a means to stop it's spread and eventually develop a vaccine are the most important and challenging tasks that the scientific community is facing right now. The first step towards these goals is to correctly identify a patient that is infected with the virus. Our group applied an unsupervised machine learning technique to identify COVID-19 cases. This is an important topic as COVID-19 is a novel disease currently being studied in detail and our methodology has the potential to reveal important differences between it and other viral pneumonia. This could then, in turn, enable doctors to more confidently help each patient. Our experiments utilize Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), and the recently developed Robust Continuous Clustering algorithm (RCC). We display the performance of RCC in identifying COVID-19 patients and its ability to compete with other unsupervised algorithms, namely K-Means++ (KM++). Using a COVID-19 Radiography dataset, we found that RCC outperformed KM++; we used the Adjusted Mutual Information Score (AMI) in order to measure the effectiveness of both algorithms. The AMI for the two and three class cases of KM++ were 0.0250 and 0.054, respectively. In comparison, RCC scored 0.5044 in the two class case and 0.267 in the three class case, clearly showing RCC as the superior algorithm. This not only opens new possible applications of RCC, but it could potentially aid in the creation of a new tool for COVID-19 identification.

Abstract (translated)

URL

https://arxiv.org/abs/2009.09899

PDF

https://arxiv.org/pdf/2009.09899.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot