Paper Reading AI Learner

AUBER: Automated BERT Regularization

2020-09-30 03:32:55
Hyun Dong Lee, Seongmin Lee, U Kang

Abstract

How can we effectively regularize BERT? Although BERT proves its effectiveness in various downstream natural language processing tasks, it often overfits when there are only a small number of training instances. A promising direction to regularize BERT is based on pruning its attention heads based on a proxy score for head importance. However, heuristic-based methods are usually suboptimal since they predetermine the order by which attention heads are pruned. In order to overcome such a limitation, we propose AUBER, an effective regularization method that leverages reinforcement learning to automatically prune attention heads from BERT. Instead of depending on heuristics or rule-based policies, AUBER learns a pruning policy that determines which attention heads should or should not be pruned for regularization. Experimental results show that AUBER outperforms existing pruning methods by achieving up to 10% better accuracy. In addition, our ablation study empirically demonstrates the effectiveness of our design choices for AUBER.

Abstract (translated)

URL

https://arxiv.org/abs/2009.14409

PDF

https://arxiv.org/pdf/2009.14409.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot