Paper Reading AI Learner

Measuring Systematic Generalization in Neural Proof Generation with Transformers

2020-09-30 16:54:37
Nicolas Gontier, Koustuv Sinha, Siva Reddy, Christopher Pal

Abstract

We are interested in understanding how well Transformer language models (TLMs) can perform reasoning tasks when trained on knowledge encoded in the form of natural language. We investigate systematic generalization abilities on an inductive logical reasoning task in natural language, which involves reasoning over relationships between entities grounded in first-order logical proofs. Specifically, we perform soft theorem-proving by leveraging TLMs to generate logical proofs represented in natural language. We systematically test proof generation capabilities, along with inference capabilities leveraging the generated proofs. We observe length-generalization issues in proof generation and inference when evaluated on longer-than-trained sequences. However, we observe TLMs improve their generalization performance after being exposed to longer, exhaustive proofs. In addition, we discover that TLMs are able to generalize better using backward-chaining proofs compared to their forward-chaining counterparts, while they find it easier to generate forward chaining proofs. We observe that models that are not trained to generate proofs are better at generalizing to problems based on longer proofs. This result suggests that Transformers have efficient, yet not interpretable reasoning strategies internally. These results also highlight the systematic generalization issues in TLMs in the context of logical reasoning, and we believe this work will motivate deeper inspection of their underlying reasoning strategies.

Abstract (translated)

URL

https://arxiv.org/abs/2009.14786

PDF

https://arxiv.org/pdf/2009.14786.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot