Paper Reading AI Learner

The Utility of Decorrelating Colour Spaces in Vector Quantised Variational Autoencoders

2020-09-30 07:44:01
Arash Akbarinia, Raquel Gil-Rodríguez, Alban Flachot, Matteo Toscani

Abstract

Vector quantised variational autoencoders (VQ-VAE) are characterised by three main components: 1) encoding visual data, 2) assigning $k$ different vectors in the so-called embedding space, and 3) decoding the learnt features. While images are often represented in RGB colour space, the specific organisation of colours in other spaces also offer interesting features, e.g. CIE L*a*b* decorrelates chromaticity into opponent axes. In this article, we propose colour space conversion, a simple quasi-unsupervised task, to enforce a network learning structured representations. To this end, we trained several instances of VQ-VAE whose input is an image in one colour space, and its output in another, e.g. from RGB to CIE L*a*b* (in total five colour spaces were considered). We examined the finite embedding space of trained networks in order to disentangle the colour representation in VQ-VAE models. Our analysis suggests that certain vectors encode hue and others luminance information. We further evaluated the quality of reconstructed images at low-level using pixel-wise colour metrics, and at high-level by inputting them to image classification and scene segmentation networks. We conducted experiments in three benchmark datasets: ImageNet, COCO and CelebA. Our results show, with respect to the baseline network (whose input and output are RGB), colour conversion to decorrelated spaces obtains 1-2 Delta-E lower colour difference and 5-10% higher classification accuracy. We also observed that the learnt embedding space is easier to interpret in colour opponent models.

Abstract (translated)

URL

https://arxiv.org/abs/2009.14487

PDF

https://arxiv.org/pdf/2009.14487.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot