Paper Reading AI Learner

Learning Hard Retrieval Cross Attention for Transformer

2020-09-30 13:18:57
Hongfei Xu, Qiuhui Liu

Abstract

The Transformer translation model that based on the multi-head attention mechanism can be parallelized easily and lead to competitive performance in machine translation. The multi-head attention network performs the scaled dot-product attention function in parallel, empowering the model by jointly attending to information from different representation subspaces at different positions. Though its advantages in parallelization, many previous works suggest the computation of the attention mechanism is not sufficiently efficient, especially when processing long sequences, and propose approaches to improve its efficiency with long sentences. In this paper, we accelerate the inference of the scaled dot-product attention in another perspective. Specifically, instead of squeezing the sequence to attend, we simplify the computation of the scaled dot-product attention by learning a hard retrieval attention which only attends to one token in the sentence rather than all tokens. Since the hard attention mechanism only attends to one position, the matrix multiplication between attention probabilities and the value sequence in the standard scaled dot-product attention can be replaced by a simple and efficient retrieval operation. As a result, our hard retrieval attention mechanism can empirically accelerate the scaled dot-product attention for both long and short sequences by 66.5%, while performing competitively in a wide range of machine translation tasks when using for cross attention networks.

Abstract (translated)

URL

https://arxiv.org/abs/2009.14658

PDF

https://arxiv.org/pdf/2009.14658.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot