Paper Reading AI Learner

Assessing Automated Machine Learning service to detect COVID-19 from X-Ray and CT images: A Real-time Smartphone Application case study

2020-10-03 23:18:05
Razib Mustafiz, Khaled Mohsin

Abstract

The recent outbreak of SARS COV-2 gave us a unique opportunity to study for a non interventional and sustainable AI solution. Lung disease remains a major healthcare challenge with high morbidity and mortality worldwide. The predominant lung disease was lung cancer. Until recently, the world has witnessed the global pandemic of COVID19, the Novel coronavirus outbreak. We have experienced how viral infection of lung and heart claimed thousands of lives worldwide. With the unprecedented advancement of Artificial Intelligence in recent years, Machine learning can be used to easily detect and classify medical imagery. It is much faster and most of the time more accurate than human radiologists. Once implemented, it is more cost-effective and time-saving. In our study, we evaluated the efficacy of Microsoft Cognitive Service to detect and classify COVID19 induced pneumonia from other Viral/Bacterial pneumonia based on X-Ray and CT images. We wanted to assess the implication and accuracy of the Automated ML-based Rapid Application Development (RAD) environment in the field of Medical Image diagnosis. This study will better equip us to respond with an ML-based diagnostic Decision Support System(DSS) for a Pandemic situation like COVID19. After optimization, the trained network achieved 96.8% Average Precision which was implemented as a Web Application for consumption. However, the same trained network did not perform the same like Web Application when ported to Smartphone for Real-time inference. Which was our main interest of study. The authors believe, there is scope for further study on this issue. One of the main goal of this study was to develop and evaluate the performance of AI-powered Smartphone-based Real-time Application. Facilitating primary diagnostic services in less equipped and understaffed rural healthcare centers of the world with unreliable internet service.

Abstract (translated)

URL

https://arxiv.org/abs/2010.02715

PDF

https://arxiv.org/pdf/2010.02715.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot