Paper Reading AI Learner

A Mathematical Exploration of Why Language Models Help Solve Downstream Tasks

2020-10-07 20:56:40
Nikunj Saunshi, Sadhika Malladi, Sanjeev Arora

Abstract

Autoregressive language models pretrained on large corpora have been successful at solving downstream tasks, even with zero-shot usage. However, there is little theoretical justification for their success. This paper considers the following questions: (1) Why should learning the distribution of natural language help with downstream classification tasks? (2) Why do features learned using language modeling help solve downstream tasks with linear classifiers? For (1), we hypothesize, and verify empirically, that classification tasks of interest can be reformulated as next word prediction tasks, thus making language modeling a meaningful pretraining task. For (2), we analyze properties of the cross-entropy objective to show that $\epsilon$-optimal language models in cross-entropy (log-perplexity) learn features that are $\mathcal{O}(\sqrt{\epsilon})$-good on natural linear classification tasks, thus demonstrating mathematically that doing well on language modeling can be beneficial for downstream tasks. We perform experiments to verify assumptions and validate theoretical results. Our theoretical insights motivate a simple alternative to the cross-entropy objective that performs well on some linear classification tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2010.03648

PDF

https://arxiv.org/pdf/2010.03648.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot