Paper Reading AI Learner

GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering

2020-10-09 14:21:43
Alex Trevithick, Bo Yang
     

Abstract

We present a simple yet powerful implicit neural function that can represent and render arbitrarily complex 3D scenes in a single network only from 2D observations. The function models 3D scenes as a general radiance field, which takes a set of posed 2D images as input, constructs an internal representation for each 3D point of the scene, and renders the corresponding appearance and geometry of any 3D point viewing from an arbitrary angle. The key to our approach is to explicitly integrate the principle of multi-view geometry to obtain the internal representations from observed 2D views, guaranteeing the learned implicit representations meaningful and multi-view consistent. In addition, we introduce an effective neural module to learn general features for each pixel in 2D images, allowing the constructed internal 3D representations to be remarkably general as well. Extensive experiments demonstrate the superiority of our approach.

Abstract (translated)

URL

https://arxiv.org/abs/2010.04595

PDF

https://arxiv.org/pdf/2010.04595.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot