Paper Reading AI Learner

Testing the Quantitative Spacetime Hypothesis using Artificial Narrative Comprehension : Establishing the Geometry of Invariant Concepts, Themes, and Namespaces

2020-09-23 11:19:17
Mark Burgess

Abstract

Given a pool of observations selected from a sensor stream, input data can be robustly represented, via a multiscale process, in terms of invariant concepts, and themes. Applying this to episodic natural language data, one may obtain a graph geometry associated with the decomposition, which is a direct encoding of spacetime relationships for the events. This study contributes to an ongoing application of the Semantic Spacetime Hypothesis, and demonstrates the unsupervised analysis of narrative texts using inexpensive computational methods without knowledge of linguistics. Data streams are parsed and fractionated into small constituents, by multiscale interferometry, in the manner of bioinformatic analysis. Fragments may then be recombined to construct original sensory episodes---or form new narratives by a chemistry of association and pattern reconstruction, based only on the four fundamental spacetime relationships. There is a straightforward correspondence between bioinformatic processes and this cognitive representation of natural language. Features identifiable as `concepts' and `narrative themes' span three main scales (micro, meso, and macro). Fragments of the input act as symbols in a hierarchy of alphabets that define new effective languages at each scale.

Abstract (translated)

URL

https://arxiv.org/abs/2010.08125

PDF

https://arxiv.org/pdf/2010.08125.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot