Paper Reading AI Learner

How many images do I need? Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring

2020-10-16 06:28:35
Saleh Shahinfar, Paul Meek, Greg Falzon

Abstract

Deep learning (DL) algorithms are the state of the art in automated classification of wildlife camera trap images. The challenge is that the ecologist cannot know in advance how many images per species they need to collect for model training in order to achieve their desired classification accuracy. In fact there is limited empirical evidence in the context of camera trapping to demonstrate that increasing sample size will lead to improved accuracy. In this study we explore in depth the issues of deep learning model performance for progressively increasing per class (species) sample sizes. We also provide ecologists with an approximation formula to estimate how many images per animal species they need for certain accuracy level a priori. This will help ecologists for optimal allocation of resources, work and efficient study design. In order to investigate the effect of number of training images; seven training sets with 10, 20, 50, 150, 500, 1000 images per class were designed. Six deep learning architectures namely ResNet-18, ResNet-50, ResNet-152, DnsNet-121, DnsNet-161, and DnsNet-201 were trained and tested on a common exclusive testing set of 250 images per class. The whole experiment was repeated on three similar datasets from Australia, Africa and North America and the results were compared. Simple regression equations for use by practitioners to approximate model performance metrics are provided. Generalized additive models (GAM) are shown to be effective in modelling DL performance metrics based on the number of training images per class, tuning scheme and dataset. Key-words: Camera Traps, Deep Learning, Ecological Informatics, Generalised Additive Models, Learning Curves, Predictive Modelling, Wildlife.

Abstract (translated)

URL

https://arxiv.org/abs/2010.08186

PDF

https://arxiv.org/pdf/2010.08186.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot