Paper Reading AI Learner

Reconstructing A Large Scale 3D Face Dataset for Deep 3D Face Identification

2020-10-16 13:48:38
Cuican Yu, Zihui Zhang, Huibin Li

Abstract

Deep learning methods have brought many breakthroughs to computer vision, especially in 2D face recognition. However, the bottleneck of deep learning based 3D face recognition is that it is difficult to collect millions of 3D faces, whether for industry or academia. In view of this situation, there are many methods to generate more 3D faces from existing 3D faces through 3D face data augmentation, which are used to train deep 3D face recognition models. However, to the best of our knowledge, there is no method to generate 3D faces from 2D face images for training deep 3D face recognition models. This letter focuses on the role of reconstructed 3D facial surfaces in 3D face identification and proposes a framework of 2D-aided deep 3D face identification. In particular, we propose to reconstruct millions of 3D face scans from a large scale 2D face database (i.e.VGGFace2), using a deep learning based 3D face reconstruction method (i.e.ExpNet). Then, we adopt a two-phase training approach: In the first phase, we use millions of face images to pre-train the deep convolutional neural network (DCNN), and in the second phase, we use normal component images (NCI) of reconstructed 3D face scans to train the DCNN. Extensive experimental results illustrate that the proposed approach can greatly improve the rank-1 score of 3D face identification on the FRGC v2.0, the Bosphorus, and the BU-3DFE 3D face databases, compared to the model trained by 2D face images. Finally, our proposed approach achieves state-of-the-art rank-1 scores on the FRGC v2.0 (97.6%), Bosphorus (98.4%), and BU-3DFE (98.8%) databases. The experimental results show that the reconstructed 3D facial surfaces are useful and our 2D-aided deep 3D face identification framework is meaningful, facing the scarcity of 3D faces.

Abstract (translated)

URL

https://arxiv.org/abs/2010.08391

PDF

https://arxiv.org/pdf/2010.08391.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot