Paper Reading AI Learner

Quantifying the Extent to Which Race and Gender Features Determine Identity in Commercial Face Recognition Algorithms

2020-10-15 18:52:36
John J. Howard, Yevgeniy B. Sirotin, Jerry L. Tipton, Arun R. Vemury

Abstract

Human face features can be used to determine individual identity as well as demographic information like gender and race. However, the extent to which black-box commercial face recognition algorithms (CFRAs) use gender and race features to determine identity is poorly understood despite increasing deployments by government and industry. In this study, we quantified the degree to which gender and race features influenced face recognition similarity scores between different people, i.e. non-mated scores. We ran this study using five different CFRAs and a sample of 333 diverse test subjects. As a control, we compared the behavior of these non-mated distributions to a commercial iris recognition algorithm (CIRA). Confirming prior work, all CFRAs produced higher similarity scores for people of the same gender and race, an effect known as "broad homogeneity". No such effect was observed for the CIRA. Next, we applied principal components analysis (PCA) to similarity score matrices. We show that some principal components (PCs) of CFRAs cluster people by gender and race, but the majority do not. Demographic clustering in the PCs accounted for only 10 % of the total CFRA score variance. No clustering was observed for the CIRA. This demonstrates that, although CFRAs use some gender and race features to establish identity, most features utilized by current CFRAs are unrelated to gender and race, similar to the iris texture patterns utilized by the CIRA. Finally, reconstruction of similarity score matrices using only PCs that showed no demographic clustering reduced broad homogeneity effects, but also decreased the separation between mated and non-mated scores. This suggests it's possible for CFRAs to operate on features unrelated to gender and race, albeit with somewhat lower recognition accuracy, but that this is not the current commercial practice.

Abstract (translated)

URL

https://arxiv.org/abs/2010.07979

PDF

https://arxiv.org/pdf/2010.07979.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot