Paper Reading AI Learner

QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics

2020-10-15 21:38:36
L. Parisi, D. Neagu, R. Ma, F. Campean

Abstract

The ReLU activation function (AF) has been extensively applied in deep neural networks, in particular Convolutional Neural Networks (CNN), for image classification despite its unresolved dying ReLU problem, which poses challenges to reliable applications. This issue has obvious important implications for critical applications, such as those in healthcare. Recent approaches are just proposing variations of the activation function within the same unresolved dying ReLU challenge. This contribution reports a different research direction by investigating the development of an innovative quantum approach to the ReLU AF that avoids the dying ReLU problem by disruptive design. The Leaky ReLU was leveraged as a baseline on which the two quantum principles of entanglement and superposition were applied to derive the proposed Quantum ReLU (QReLU) and the modified-QReLU (m-QReLU) activation functions. Both QReLU and m-QReLU are implemented and made freely available in TensorFlow and Keras. This original approach is effective and validated extensively in case studies that facilitate the detection of COVID-19 and Parkinson Disease (PD) from medical images. The two novel AFs were evaluated in a two-layered CNN against nine ReLU-based AFs on seven benchmark datasets, including images of spiral drawings taken via graphic tablets from patients with Parkinson Disease and healthy subjects, and point-of-care ultrasound images on the lungs of patients with COVID-19, those with pneumonia and healthy controls. Despite a higher computational cost, results indicated an overall higher classification accuracy, precision, recall and F1-score brought about by either quantum AFs on five of the seven bench-mark datasets, thus demonstrating its potential to be the new benchmark or gold standard AF in CNNs and aid image classification tasks involved in critical applications, such as medical diagnoses of COVID-19 and PD.

Abstract (translated)

URL

https://arxiv.org/abs/2010.08031

PDF

https://arxiv.org/pdf/2010.08031.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot