Paper Reading AI Learner

A Learning-based Discretionary Lane-Change Decision-Making Model with Driving Style Awareness

2020-10-19 14:05:47
Yifan Zhang, Qian Xu, Jianping Wang, Kui Wu, Zuduo Zheng, Kejie Lu

Abstract

Discretionary lane change (DLC) is a basic but complex maneuver in driving, which aims at reaching a faster speed or better driving conditions, e.g., further line of sight or better ride quality. Although many DLC decision-making models have been studied in traffic engineering and autonomous driving, the impact of human factors, which is an integral part of current and future traffic flow, is largely ignored in the existing literature. In autonomous driving, the ignorance of human factors of surrounding vehicles will lead to poor interaction between the ego vehicle and the surrounding vehicles, thus, a high risk of accidents. The human factors are also a crucial part to simulate a human-like traffic flow in the traffic engineering area. In this paper, we integrate the human factors that are represented by driving styles to design a new DLC decision-making model. Specifically, our proposed model takes not only the contextual traffic information but also the driving styles of surrounding vehicles into consideration and makes lane-change/keep decisions. Moreover, the model can imitate human drivers' decision-making maneuvers to the greatest extent by learning the driving style of the ego vehicle. Our evaluation results show that the proposed model almost follows the human decision-making maneuvers, which can achieve 98.66% prediction accuracy with respect to human drivers' decisions against the ground truth. Besides, the lane-change impact analysis results demonstrate that our model even performs better than human drivers in terms of improving the safety and speed of traffic.

Abstract (translated)

URL

https://arxiv.org/abs/2010.09533

PDF

https://arxiv.org/pdf/2010.09533.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot