Paper Reading AI Learner

Reinforcement learning using Deep Q Networks and Q learning accurately localizes brain tumors on MRI with very small training sets

2020-10-21 05:00:04
Joseph N Stember, Hrithwik Shalu

Abstract

Purpose Supervised deep learning in radiology suffers from notorious inherent limitations: 1) It requires large, hand-annotated data sets, 2) It is non-generalizable, and 3) It lacks explainability and intuition. We have recently proposed Reinforcement Learning to address all threes. However, we applied it to images with radiologist eye tracking points, which limits the state-action space. Here we generalize the Deep-Q Learning to a gridworld-based environment, so that only the images and image masks are required. Materials and Methods We trained a Deep Q network on 30 two-dimensional image slices from the BraTS brain tumor database. Each image contained one lesion. We then tested the trained Deep Q network on a separate set of 30 testing set images. For comparison, we also trained and tested a keypoint detection supervised deep learning network for the same set of training / testing images. Results Whereas the supervised approach quickly overfit the training data, and predicably performed poorly on the testing set (11\% accuracy), the Deep-Q learning approach showed progressive improved generalizability to the testing set over training time, reaching 70\% accuracy. Conclusion We have shown a proof-of-principle application of reinforcement learning to radiological images, here using 2D contrast-enhanced MRI brain images with the goal of localizing brain tumors. This represents a generalization of recent work to a gridworld setting, naturally suitable for analyzing medical images.

Abstract (translated)

URL

https://arxiv.org/abs/2010.10763

PDF

https://arxiv.org/pdf/2010.10763.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot