Paper Reading AI Learner

3D Meta Point Signature: Learning to Learn 3D Point Signature for 3D Dense Shape Correspondence

2020-10-21 17:27:39
Hao Huang, Lingjing Wang, Xiang Li, Yi Fang
     

Abstract

Point signature, a representation describing the structural neighborhood of a point in 3D shapes, can be applied to establish correspondences between points in 3D shapes. Conventional methods apply a weight-sharing network, e.g., any kind of graph neural networks, across all neighborhoods to directly generate point signatures and gain the generalization ability by extensive training over a large amount of training samples from scratch. However, these methods lack the flexibility in rapidly adapting to unseen neighborhood structures and thus generalizes poorly on new point sets. In this paper, we propose a novel meta-learning based 3D point signature model, named 3Dmetapointsignature (MEPS) network, that is capable of learning robust point signatures in 3D shapes. By regarding each point signature learning process as a task, our method obtains an optimized model over the best performance on the distribution of all tasks, generating reliable signatures for new tasks, i.e., signatures of unseen point neighborhoods. Specifically, the MEPS consists of two modules: a base signature learner and a meta signature learner. During training, the base-learner is trained to perform specific signature learning tasks. In the meantime, the meta-learner is trained to update the base-learner with optimal parameters. During testing, the meta-learner that is learned with the distribution of all tasks can adaptively change parameters of the base-learner, accommodating to unseen local neighborhoods. We evaluate the MEPS model on two datasets, e.g., FAUST and TOSCA, for dense 3Dshape correspondence. Experimental results demonstrate that our method not only gains significant improvements over the baseline model and achieves state-of-the-art results, but also is capable of handling unseen 3D shapes.

Abstract (translated)

URL

https://arxiv.org/abs/2010.11159

PDF

https://arxiv.org/pdf/2010.11159.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot