Paper Reading AI Learner

Grapheme or phoneme? An Analysis of Tacotron's Embedded Representations

2020-10-21 00:58:29
Antoine Perquin, Erica Cooper, Junichi Yamagishi

Abstract

End-to-end models, particularly Tacotron-based ones, are currently a popular solution for text-to-speech synthesis. They allow the production of high-quality synthesized speech with little to no text preprocessing. Phoneme inputs are usually preferred over graphemes in order to limit the amount of pronunciation errors. In this work we show that, in the case of a well-curated French dataset, graphemes can be used as input without increasing the amount of pronunciation errors. Furthermore, we perform an analysis of the representation learned by the Tacotron model and show that the contextual grapheme embeddings encode phoneme information, and that they can be used for grapheme-to-phoneme conversion and phoneme control of synthetic speech.

Abstract (translated)

URL

https://arxiv.org/abs/2010.10694

PDF

https://arxiv.org/pdf/2010.10694.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot