Paper Reading AI Learner

Using Conditional Generative Adversarial Networks to Reduce the Effects of Latency in Robotic Telesurgery

2020-10-07 13:40:44
Neil Sachdeva, Misha Klopukh, Rachel St. Clair, William Hahn

Abstract

The introduction of surgical robots brought about advancements in surgical procedures. The applications of remote telesurgery range from building medical clinics in underprivileged areas, to placing robots abroad in military hot-spots where accessibility and diversity of medical experience may be limited. Poor wireless connectivity may result in a prolonged delay, referred to as latency, between a surgeon's input and action a robot takes. In surgery, any micro-delay can injure a patient severely and in some cases, result in fatality. One was to increase safety is to mitigate the effects of latency using deep learning aided computer vision. While the current surgical robots use calibrated sensors to measure the position of the arms and tools, in this work we present a purely optical approach that provides a measurement of the tool position in relation to the patient's tissues. This research aimed to produce a neural network that allowed a robot to detect its own mechanical manipulator arms. A conditional generative adversarial networks (cGAN) was trained on 1107 frames of mock gastrointestinal robotic surgery data from the 2015 EndoVis Instrument Challenge and corresponding hand-drawn labels for each frame. When run on new testing data, the network generated near-perfect labels of the input images which were visually consistent with the hand-drawn labels and was able to do this in 299 milliseconds. These accurately generated labels can then be used as simplified identifiers for the robot to track its own controlled tools. These results show potential for conditional GANs as a reaction mechanism such that the robot can detect when its arms move outside the operating area within a patient. This system allows for more accurate monitoring of the position of surgical instruments in relation to the patient's tissue, increasing safety measures that are integral to successful telesurgery systems.

Abstract (translated)

URL

https://arxiv.org/abs/2010.11704

PDF

https://arxiv.org/pdf/2010.11704.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot