Paper Reading AI Learner

Bidirectional Microrocker Bots with Sharp Tips Actuated by a Single Electromagnet

2020-10-21 20:14:55
DeaGyu Kim, Tony Wang, Yifan Shi, Zhijian Hao, Azadeh Ansari
     

Abstract

The recent advancements in nanoscale 3D printing and microfabrication techniques have reinvigorated research on microrobotics and nanomachines. However, precise control of the robot motion and navigation on biological environments have remained challenging to date. This work presents the first demonstration of magnetic microscale rocker robot (microrocker bot) capable of bidirectional movement on flat as well as biological surfaces, when actuated by a single compact electromagnet. The 100um by 113um by 36um robot was 3D printed via two-photon lithography and subsequently coated with a nickel (Ni) thin film. When actuated by an externally applied magnetic sawtooth field, the robot demonstrated stick-slip motion enabled by its rockers. The controllable bidirectional motion is enabled by adjusting the DC offset of the waveform, which tilts the robot and biases it towards either forward or backward motion. The microrocker bots are further equipped with sharp tips that can get engaged via application of DC-only or low frequency magnetic fields. This novel control method offers an attractive solution to replace the multiple bulky coils traditionally used for magnetic actuation and control, as well as allows for a more flexible and simple approach towards microrobotics motion control. When the frequency and offset of the sawtooth waveform are optimized, the robot travels up to 87ums (0.87 body length per second) forward and backward with minor deviance from linear trajectories. Finally, to prove the robot's capabilities in direct contact with biological environments, we demonstrate the microbot's ability to traverse forward and backward on the surface of a Dracaena Fragrans (corn plant), as well as upend on its mechanical tip.

Abstract (translated)

URL

https://arxiv.org/abs/2010.11295

PDF

https://arxiv.org/pdf/2010.11295.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot