Paper Reading AI Learner

Learning from Suboptimal Demonstration via Self-Supervised Reward Regression

2020-10-17 04:18:04
Letian Chen, Rohan Paleja, Matthew Gombolay

Abstract

Learning from Demonstration (LfD) seeks to democratize robotics by enabling non-roboticist end-users to teach robots to perform a task by providing a human demonstration. However, modern LfD techniques, such as inverse reinforcement learning (IRL), assume users provide at least stochastically optimal demonstrations. This assumption fails to hold in all but the most isolated, controlled scenarios, reducing the ability to achieve the goal of empowering real end-users. Recent attempts to learn from sub-optimal demonstration leverage pairwise rankings through Preference-based Reinforcement Learning (PbRL) to infer a more optimal policy than the demonstration. However, we show that these approaches make incorrect assumptions and, consequently, suffer from brittle, degraded performance. In this paper, we overcome the limitations of prior work by developing a novel computational technique that infers an idealized reward function from suboptimal demonstration and bootstraps suboptimal demonstrations to synthesize optimality-parameterized training data for training our reward function. We empirically validate we can learn an idealized reward function with $\sim0.95$ correlation with the ground truth reward versus only $\sim 0.75$ for prior work. We can then train policies achieving $\sim 200\%$ improvement over the suboptimal demonstration and $\sim 90\%$ improvement over prior work. Finally, we present a real-world implementation for teaching a robot to hit a topspin shot in table tennis better than user demonstration.

Abstract (translated)

URL

https://arxiv.org/abs/2010.11723

PDF

https://arxiv.org/pdf/2010.11723.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot