Paper Reading AI Learner

A Novel Machine Learning Method for Preference Identification

2020-10-22 07:43:37
Azlan Iqbal

Abstract

Human preference or taste within any domain is usually a difficult thing to identify or predict with high probability. In the domain of chess problem composition, the same is true. Traditional machine learning approaches tend to focus on the ability of computers to process massive amounts of data and continuously adjust 'weights' within an artificial neural network to better distinguish between say, two groups of objects. Contrasted with chess compositions, there is no clear distinction between what constitutes one and what does not; even less so between a good one and a poor one. We propose a computational method that is able to learn from existing databases of 'liked' and 'disliked' compositions such that a new and unseen collection can be sorted with increased probability of matching a solver's preferences. The method uses a simple 'change factor' relating to the Forsyth-Edwards Notation (FEN) of each composition's starting position, coupled with repeated statistical analysis of sample pairs from both databases. Tested using the author's own collections of computer-generated chess problems, the experimental results showed that the method was able to sort a new and unseen collection of compositions such that, on average, over 70% of the preferred compositions were in the top half of the collection. This saves significant time and energy on the part of solvers as they are likely to find more of what they like sooner. The method may even be applicable to other domains such as image processing because it does not rely on any chess-specific rules but rather just a sufficient and quantifiable 'change' in representation from one object to the next.

Abstract (translated)

URL

https://arxiv.org/abs/2010.13517

PDF

https://arxiv.org/pdf/2010.13517.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot