Paper Reading AI Learner

Improving Perceptual Quality by Phone-Fortified Perceptual Loss for Speech Enhancement

2020-10-28 18:34:28
Tsun-An Hsieh, Cheng Yu, Szu-Wei Fu, Xugang Lu, Yu Tsao

Abstract

Speech enhancement (SE) aims to improve speech quality and intelligibility, which are both related to a smooth transition in speech segments that may carry linguistic information, e.g. phones and syllables. In this study, we took phonetic characteristics into account in the SE training process. Hence, we designed a phone-fortified perceptual (PFP) loss, and the training of our SE model was guided by PFP loss. In PFP loss, phonetic characteristics are extracted by wav2vec, an unsupervised learning model based on the contrastive predictive coding (CPC) criterion. Different from previous deep-feature-based approaches, the proposed approach explicitly uses the phonetic information in the deep feature extraction process to guide the SE model training. To test the proposed approach, we first confirmed that the wav2vec representations carried clear phonetic information using a t-distributed stochastic neighbor embedding (t-SNE) analysis. Next, we observed that the proposed PFP loss was more strongly correlated with the perceptual evaluation metrics than point-wise and signal-level losses, thus achieving higher scores for standardized quality and intelligibility evaluation metrics in the Voice Bank--DEMAND dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2010.15174

PDF

https://arxiv.org/pdf/2010.15174.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot