Paper Reading AI Learner

Resource Allocation in Multi-armed Bandit Exploration: Overcoming Nonlinear Scaling with Adaptive Parallelism

2020-10-31 18:19:29
Brijen Thananjeyan, Kirthevasan Kandasamy, Ion Stoica, Michael I. Jordan, Ken Goldberg, Joseph E. Gonzalez

Abstract

We study exploration in stochastic multi-armed bandits when we have access to a divisible resource, and can allocate varying amounts of this resource to arm pulls. By allocating more resources to a pull, we can compute the outcome faster to inform subsequent decisions about which arms to pull. However, since distributed environments do not scale linearly, executing several arm pulls in parallel, and hence less resources per pull, may result in better throughput. For example, in simulation-based scientific studies, an expensive simulation can be sped up by running it on multiple cores. This speed-up is, however, partly offset by the communication among cores and overheads, which results in lower throughput than if fewer cores were allocated to run more trials in parallel. We explore these trade-offs in the fixed confidence setting, where we need to find the best arm with a given success probability, while minimizing the time to do so. We propose an algorithm which trades off between information accumulation and throughout and show that the time taken can be upper bounded by the solution of a dynamic program whose inputs are the squared gaps between the suboptimal and optimal arms. We prove a matching hardness result which demonstrates that the above dynamic program is fundamental to this problem. Next, we propose and analyze an algorithm for the fixed deadline setting, where we are given a time deadline and need to maximize the success probability of finding the best arm. We corroborate these theoretical insights with an empirical evaluation.

Abstract (translated)

URL

https://arxiv.org/abs/2011.00330

PDF

https://arxiv.org/pdf/2011.00330.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot