Paper Reading AI Learner

Analyzing the Effect of Multi-task Learning for Biomedical Named Entity Recognition

2020-11-01 04:52:56
Arda Akdemir, Tetsuo Shibuya

Abstract

Developing high-performing systems for detecting biomedical named entities has major implications. State-of-the-art deep-learning based solutions for entity recognition often require large annotated datasets, which is not available in the biomedical domain. Transfer learning and multi-task learning have been shown to improve performance for low-resource domains. However, the applications of these methods are relatively scarce in the biomedical domain, and a theoretical understanding of why these methods improve the performance is lacking. In this study, we performed an extensive analysis to understand the transferability between different biomedical entity datasets. We found useful measures to predict transferability between these datasets. Besides, we propose combining transfer learning and multi-task learning to improve the performance of biomedical named entity recognition systems, which is not applied before to the best of our knowledge.

Abstract (translated)

URL

https://arxiv.org/abs/2011.00425

PDF

https://arxiv.org/pdf/2011.00425.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot