Paper Reading AI Learner

BioNerFlair: biomedical named entity recognition using flair embedding and sequence tagger

2020-11-03 06:46:45
Harsh Patel

Abstract

Motivation: The proliferation of Biomedical research articles has made the task of information retrieval more important than ever. Scientists and Researchers are having difficulty in finding articles that contain information relevant to them. Proper extraction of biomedical entities like Disease, Drug/chem, Species, Gene/protein, can considerably improve the filtering of articles resulting in better extraction of relevant information. Performance on BioNer benchmarks has progressively improved because of progression in transformers-based models like BERT, XLNet, OpenAI, GPT2, etc. These models give excellent results; however, they are computationally expensive and we can achieve better scores for domain-specific tasks using other contextual string-based models and LSTM-CRF based sequence tagger. Results: We introduce BioNerFlair, a method to train models for biomedical named entity recognition using Flair plus GloVe embeddings and Bidirectional LSTM-CRF based sequence tagger. With almost the same generic architecture widely used for named entity recognition, BioNerFlair outperforms previous state-of-the-art models. I performed experiments on 8 benchmarks datasets for biomedical named entity recognition. Compared to current state-of-the-art models, BioNerFlair achieves the best F1-score of 90.17 beyond 84.72 on the BioCreative II gene mention (BC2GM) corpus, best F1-score of 94.03 beyond 92.36 on the BioCreative IV chemical and drug (BC4CHEMD) corpus, best F1-score of 88.73 beyond 78.58 on the JNLPBA corpus, best F1-score of 91.1 beyond 89.71 on the NCBI disease corpus, best F1-score of 85.48 beyond 78.98 on the Species-800 corpus, while near best results was observed on BC5CDR-chem, BC3CDR-disease, and LINNAEUS corpus.

Abstract (translated)

URL

https://arxiv.org/abs/2011.01504

PDF

https://arxiv.org/pdf/2011.01504.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot