Paper Reading AI Learner

IDE-Net: Interactive Driving Event and Pattern Extraction from Human Data

2020-11-04 16:56:12
Xiaosong Jia, Liting Sun, Masayoshi Tomizuka, Wei Zhan

Abstract

Autonomous vehicles (AVs) need to share the road with multiple, heterogeneous road users in a variety of driving scenarios. It is overwhelming and unnecessary to carefully interact with all observed agents, and AVs need to determine whether and when to interact with each surrounding agent. In order to facilitate the design and testing of prediction and planning modules of AVs, in-depth understanding of interactive behavior is expected with proper representation, and events in behavior data need to be extracted and categorized automatically. Answers to what are the essential patterns of interactions are also crucial for these motivations in addition to answering whether and when. Thus, learning to extract interactive driving events and patterns from human data for tackling the whether-when-what tasks is of critical importance for AVs. There is, however, no clear definition and taxonomy of interactive behavior, and most of the existing works are based on either manual labelling or hand-crafted rules and features. In this paper, we propose the Interactive Driving event and pattern Extraction Network (IDE-Net), which is a deep learning framework to automatically extract interaction events and patterns directly from vehicle trajectories. In IDE-Net, we leverage the power of multi-task learning and proposed three auxiliary tasks to assist the pattern extraction in an unsupervised fashion. We also design a unique spatial-temporal block to encode the trajectory data. Experimental results on the INTERACTION dataset verified the effectiveness of such designs in terms of better generalizability and effective pattern extraction. We find three interpretable patterns of interactions, bringing insights for driver behavior representation, modeling and comprehension. Both objective and subjective evaluation metrics are adopted in our analysis of the learned patterns.

Abstract (translated)

URL

https://arxiv.org/abs/2011.02403

PDF

https://arxiv.org/pdf/2011.02403.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot