Paper Reading AI Learner

Unsupervised Pattern Discovery from Thematic Speech Archives Based on Multilingual Bottleneck Features

2020-11-03 20:06:48
Man-Ling Sung, Siyuan Feng, Tan Lee

Abstract

The present study tackles the problem of automatically discovering spoken keywords from untranscribed audio archives without requiring word-by-word speech transcription by automatic speech recognition (ASR) technology. The problem is of practical significance in many applications of speech analytics, including those concerning low-resource languages, and large amount of multilingual and multi-genre data. We propose a two-stage approach, which comprises unsupervised acoustic modeling and decoding, followed by pattern mining in acoustic unit sequences. The whole process starts by deriving and modeling a set of subword-level speech units with untranscribed data. With the unsupervisedly trained acoustic models, a given audio archive is represented by a pseudo transcription, from which spoken keywords can be discovered by string mining algorithms. For unsupervised acoustic modeling, a deep neural network trained by multilingual speech corpora is used to generate speech segmentation and compute bottleneck features for segment clustering. Experimental results show that the proposed system is able to effectively extract topic-related words and phrases from the lecture recordings on MIT OpenCourseWare.

Abstract (translated)

URL

https://arxiv.org/abs/2011.01986

PDF

https://arxiv.org/pdf/2011.01986.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot