Paper Reading AI Learner

Behavior Planning at Urban Intersections through Hierarchical Reinforcement Learning

2020-11-09 19:23:26
Zhiqian Qiao, Jeff Schneider, John M. Dolan

Abstract

For autonomous vehicles, effective behavior planning is crucial to ensure safety of the ego car. In many urban scenarios, it is hard to create sufficiently general heuristic rules, especially for challenging scenarios that some new human drivers find difficult. In this work, we propose a behavior planning structure based on reinforcement learning (RL) which is capable of performing autonomous vehicle behavior planning with a hierarchical structure in simulated urban environments. Application of the hierarchical structure allows the various layers of the behavior planning system to be satisfied. Our algorithms can perform better than heuristic-rule-based methods for elective decisions such as when to turn left between vehicles approaching from the opposite direction or possible lane-change when approaching an intersection due to lane blockage or delay in front of the ego car. Such behavior is hard to evaluate as correct or incorrect, but for some aggressive expert human drivers handle such scenarios effectively and quickly. On the other hand, compared to traditional RL methods, our algorithm is more sample-efficient, due to the use of a hybrid reward mechanism and heuristic exploration during the training process. The results also show that the proposed method converges to an optimal policy faster than traditional RL methods.

Abstract (translated)

URL

https://arxiv.org/abs/2011.04697

PDF

https://arxiv.org/pdf/2011.04697.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot