Paper Reading AI Learner

Artificial sound change: Language change and deep convolutional neural networks in iterative learning

2020-11-10 23:49:09
Gašper Beguš

Abstract

This paper proposes a framework for modeling sound change that combines deep convolutional neural networks and iterative learning. Acquisition and transmission of speech across generations is modeled by training generations of Generative Adversarial Networks (Goodfellow et al. arXiv:1406.2661,Donahue et al. arXiv:1705.07904) on unannotated raw speech data. The paper argues that several properties of sound change emerge from the proposed architecture. Four generations of Generative Adversarial Networks were trained on an allophonic distribution in English where voiceless stops are aspirated word-initially before stressed vowels except if preceded by [s]. The first generation of networks is trained on the relevant sequences in human speech from the TIMIT database. The subsequent generations are not trained on TIMIT, but on generated outputs from the previous generation and thus start learning from each other in an iterative learning task. The initial allophonic distribution is progressively being lost with each generation, likely due to pressures from the global distribution of aspiration in the training data that resembles phonological pressures in natural language. The networks show signs of a gradual shift in phonetic targets characteristic of a gradual phonetic sound change. At endpoints, the networks' outputs superficially resemble a phonological change -- rule loss -- driven by imperfect learning. The model features signs of stability, one of the more challenging aspects of computational models of sound change. The results suggest that the proposed Generative Adversarial models of phonetic and phonological acquisition have the potential to yield new insights into the long-standing question of how to model language change.

Abstract (translated)

URL

https://arxiv.org/abs/2011.05463

PDF

https://arxiv.org/pdf/2011.05463.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot