Paper Reading AI Learner

Efficient falsification approach for autonomous vehicle validation using a parameter optimisation technique based on reinforcement learning

2020-11-16 02:56:13
Dhanoop Karunakaran, Stewart Worrall, Eduardo Nebot

Abstract

The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved. It is well-known that there are no universally agreed Verification and Validation (VV) methodologies guarantee absolute safety, which is crucial for the acceptance of this technology. The uncertainties in the behaviour of the traffic participants and the dynamic world cause stochastic reactions in advanced autonomous systems. The addition of ML algorithms and probabilistic techniques adds significant complexity to the process for real-world testing when compared to traditional methods. Most research in this area focuses on generating challenging concrete scenarios or test cases to evaluate the system performance by looking at the frequency distribution of extracted parameters as collected from the real-world data. These approaches generally employ Monte-Carlo simulation and importance sampling to generate critical cases. This paper presents an efficient falsification method to evaluate the System Under Test. The approach is based on a parameter optimisation problem to search for challenging scenarios. The optimisation process aims at finding the challenging case that has maximum return. The method applies policy-gradient reinforcement learning algorithm to enable the learning. The riskiness of the scenario is measured by the well established RSS safety metric, euclidean distance, and instance of a collision. We demonstrate that by using the proposed method, we can more efficiently search for challenging scenarios which could cause the system to fail in order to satisfy the safety requirements.

Abstract (translated)

URL

https://arxiv.org/abs/2011.07699

PDF

https://arxiv.org/pdf/2011.07699.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot