Paper Reading AI Learner

Topology-Based Feature Design and Tracking for Multi-Center Cyclones

2020-11-01 17:39:27
Wito Engelke, Talha Bin Masood, Jakob Beran, Rodrigo Caballero, Ingrid Hotz

Abstract

In this paper, we propose a concept to design, track, and compare application-specific feature definitions expressed as sets of critical points. Our work has been inspired by the observation that in many applications a large variety of different feature definitions for the same concept are used. Often, these definitions compete with each other and it is unclear which definition should be used in which context. A prominent example is the definition of cyclones in climate research. Despite the differences, frequently these feature definitions can be related to topological concepts. In our approach, we provide a cyclone tracking framework that supports interactive feature definition and comparison based on a precomputed tracking graph that stores all extremal points as well as their temporal correspondents. The framework combines a set of independent building blocks: critical point extraction, critical point tracking, feature definition, and track exploration. One of the major advantages of such an approach is the flexibility it provides, that is, each block is exchangeable. Moreover, it also enables us to perform the most expensive analysis, the construction of a full tracking graph, as a prepossessing step, while keeping the feature definition interactive. Different feature definitions can be explored and compared interactively based on this tracking graph. Features are specified by rules for grouping critical points, while feature tracking corresponds to filtering and querying the full tracking graph by specific requests. We demonstrate this method for cyclone identification and tracking in the context of climate research.

Abstract (translated)

URL

https://arxiv.org/abs/2011.08676

PDF

https://arxiv.org/pdf/2011.08676.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot