Paper Reading AI Learner

Do Fine-tuned Commonsense Language Models Really Generalize?

2020-11-18 08:52:49
Mayank Kejriwal, Ke Shen

Abstract

Recently, transformer-based methods such as RoBERTa and GPT-3 have led to significant experimental advances in natural language processing tasks such as question answering and commonsense reasoning. The latter is typically evaluated through multiple benchmarks framed as multiple-choice instances of the former. According to influential leaderboards hosted by the Allen Institute (evaluating state-of-the-art performance on commonsense reasoning benchmarks), models based on such transformer methods are approaching human-like performance and have average accuracy well over 80% on many benchmarks. Since these are commonsense benchmarks, a model that generalizes on commonsense reasoning should not experience much performance loss across multiple commonsense benchmarks. In this paper, we study the generalization issue in detail by designing and conducting a rigorous scientific study. Using five common benchmarks, multiple controls and statistical analysis, we find clear evidence that fine-tuned commonsense language models still do not generalize well, even with moderate changes to the experimental setup, and may, in fact, be susceptible to dataset bias. We also perform selective studies, including qualitative and consistency analyses, to gain deeper insight into the problem.

Abstract (translated)

URL

https://arxiv.org/abs/2011.09159

PDF

https://arxiv.org/pdf/2011.09159.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot