Paper Reading AI Learner

Learning Interpretable Flight's 4D Landing Parameters Using Tunnel Gaussian Process

2020-11-18 15:18:29
Sim Kuan Goh, Narendra Pratap Singh, Zhi Jun Lim, Sameer Alam

Abstract

Approach and landing accidents (ALAs) have resulted in a significant number of hull losses worldwide, aside from runway excursion, hard landing, landing short. Technologies (e.g., instrument landing system) and procedures (e.g., stabilized approach criteria) have been developed to reduce ALA risks. In this paper, we propose a data-driven method to learn and interpret flight's 4D approach and landing parameters to facilitate comprehensible and actionable insights of landing dynamics for aircrew and air traffic controller (ATCO) in real-time. Specifically, we develop a tunnel Gaussian process (TGP) model to gain an insight into the landing dynamics of aircraft using advanced surface movement guidance and control system (A-SMGCS) data, which then indicates the stability of flight. TGP hybridizes the strengths of sparse variational Gaussian process and polar Gaussian process to learn from a large amount of data in cylindrical coordinates. We examine TGP qualitatively and quantitatively by synthesizing two complex trajectory datasets. Empirically, TGP reconstructed the structure of the synthesized trajectories. When applied to operational A-SMGCS data, TGP provides the probabilistic description of landing dynamics and interpretable 4D tunnel views of approach and landing parameters. The 4D tunnel views can facilitate the analysis of procedure adherence and augment existing aircrew and ATCO's display during the approach and landing procedures, enabling necessary corrective actions. The proposed TGP model can also provide insights and aid the design of landing procedures in complex runway configurations such as parallel approach. Moreover, the extension of TGP model to the next generation of landing systems (e.g., GNSS landing system) is straight-forward. The interactive visualization of our findings are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2011.09335

PDF

https://arxiv.org/pdf/2011.09335.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot