Paper Reading AI Learner

Latent-Separated Global Prediction for Learned Image Compression

2020-11-19 08:15:10
Zongyu Guo, Zhizheng Zhang, Runsen Feng, Simeng Sun, Zhibo Chen

Abstract

Over the past several years, we have witnessed the impressive progress of learned image compression. Recent learned image codecs are based on auto-encoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to facilitate entropy estimation. However, they are hard to model effective long-range dependencies of the latents. In this paper, we explore to further reduce spatial redundancies among the latent variables by utilizing cross-channel relationships for explicit global prediction in the latent space. Obviously, it will generate bits overhead to transmit the prediction vectors that indicate the global correlations between reference point and current decoding point. Therefore, to avoid the transmission of overhead, we propose a 3-D global context model, which separates the latents into two channel groups. Once the first group is decoded, the proposed module will leverage the known group to model spatial correlations that guide the global prediction for the unknown group and thus achieve more efficient entropy estimation. Besides, we further adopt split attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.

Abstract (translated)

URL

https://arxiv.org/abs/2011.09704

PDF

https://arxiv.org/pdf/2011.09704.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot