Paper Reading AI Learner

All-in-Focus Iris Camera With a Great Capture Volume

2020-11-19 15:39:45
Kunbo Zhang, Zhenteng Shen, Yunlong Wang, Zhenan Sun


tract: Imaging volume of an iris recognition system has been restricting the throughput and cooperation convenience in biometric applications. Numerous improvement trials are still impractical to supersede the dominant fixed-focus lens in stand-off iris recognition due to incremental performance increase and complicated optical design. In this study, we develop a novel all-in-focus iris imaging system using a focus-tunable lens and a 2D steering mirror to greatly extend capture volume by spatiotemporal multiplexing method. Our iris imaging depth of field extension system requires no mechanical motion and is capable to adjust the focal plane at extremely high speed. In addition, the motorized reflection mirror adaptively steers the light beam to extend the horizontal and vertical field of views in an active manner. The proposed all-in-focus iris camera increases the depth of field up to 3.9 m which is a factor of 37.5 compared with conventional long focal lens. We also experimentally demonstrate the capability of this 3D light beam steering imaging system in real-time multi-person iris refocusing using dynamic focal stacks and the potential of continuous iris recognition for moving participants.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot