Paper Reading AI Learner

Adversarial Threats to DeepFake Detection: A Practical Perspective

2020-11-19 16:53:38
Paarth Neekhara, Brian Dolhansky, Joanna Bitton, Cristian Canton Ferrer

Abstract

tract: Facially manipulated images and videos or DeepFakes can be used maliciously to fuel misinformation or defame individuals. Therefore, detecting DeepFakes is crucial to increase the credibility of social media platforms and other media sharing web sites. State-of-the art DeepFake detection techniques rely on neural network based classification models which are known to be vulnerable to adversarial examples. In this work, we study the vulnerabilities of state-of-the-art DeepFake detection methods from a practical stand point. We perform adversarial attacks on DeepFake detectors in a black box setting where the adversary does not have complete knowledge of the classification models. We study the extent to which adversarial perturbations transfer across different models and propose techniques to improve the transferability of adversarial examples. We also create more accessible attacks using Universal Adversarial Perturbations which pose a very feasible attack scenario since they can be easily shared amongst attackers. We perform our evaluations on the winning entries of the DeepFake Detection Challenge (DFDC) and demonstrate that they can be easily bypassed in a practical attack scenario by designing transferable and accessible adversarial attacks.

Abstract (translated)

URL

https://arxiv.org/abs/2011.09957

PDF

https://arxiv.org/pdf/2011.09957


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot