Paper Reading AI Learner

Segmentation overlapping wear particles with few labelled data and imbalance sample

2020-11-20 10:04:16
Peng Peng, Jiugen Wang


tract: Ferrograph image segmentation is of significance for obtaining features of wear particles. However, wear particles are usually overlapped in the form of debris chains, which makes challenges to segment wear debris. An overlapping wear particle segmentation network (OWPSNet) is proposed in this study to segment the overlapped debris chains. The proposed deep learning model includes three parts: a region segmentation network, an edge detection network and a feature refine module. The region segmentation network is an improved U shape network, and it is applied to separate the wear debris form background of ferrograph image. The edge detection network is used to detect the edges of wear particles. Then, the feature refine module combines low-level features and high-level semantic features to obtain the final results. In order to solve the problem of sample imbalance, we proposed a square dice loss function to optimize the model. Finally, extensive experiments have been carried out on a ferrograph image dataset. Results show that the proposed model is capable of separating overlapping wear particles. Moreover, the proposed square dice loss function can improve the segmentation results, especially for the segmentation results of wear particle edge.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot