Paper Reading AI Learner

Run Away From your Teacher: Understanding BYOL by a Novel Self-Supervised Approach

2020-11-22 05:49:50
Haizhou Shi, Dongliang Luo, Siliang Tang, Jian Wang, Yueting Zhuang

Abstract

Recently, a newly proposed self-supervised framework Bootstrap Your Own Latent (BYOL) seriously challenges the necessity of negative samples in contrastive learning frameworks. BYOL works like a charm despite the fact that it discards the negative samples completely and there is no measure to prevent collapse in its training objective. In this paper, we suggest understanding BYOL from the view of our proposed interpretable self-supervised learning framework, Run Away From your Teacher (RAFT). RAFT optimizes two objectives at the same time: (i) aligning two views of the same data to similar representations and (ii) running away from the model's Mean Teacher (MT, the exponential moving average of the history models) instead of BYOL's running towards it. The second term of RAFT explicitly prevents the representation collapse and thus makes RAFT a more conceptually reliable framework. We provide basic benchmarks of RAFT on CIFAR10 to validate the effectiveness of our method. Furthermore, we prove that BYOL is equivalent to RAFT under certain conditions, providing solid reasoning for BYOL's counter-intuitive success.

Abstract (translated)

URL

https://arxiv.org/abs/2011.10944

PDF

https://arxiv.org/pdf/2011.10944.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot