Paper Reading AI Learner

Yet it moves: Learning from Generic Motions to Generate IMU data from YouTube videos

2020-11-23 18:16:46
Vitor Fortes Rey, Kamalveer Kaur Garewal, Paul Lukowicz

Abstract

Human activity recognition (HAR) using wearable sensors has benefited much less from recent advances in Machine Learning than fields such as computer vision and natural language processing. This is to a large extent due to the lack of large scale repositories of labeled training data. In our research we aim to facilitate the use of online videos, which exists in ample quantity for most activities and are much easier to label than sensor data, to simulate labeled wearable motion sensor data. In previous work we already demonstrate some preliminary results in this direction focusing on very simple, activity specific simulation models and a single sensor modality (acceleration norm)\cite{10.1145/3341162.3345590}. In this paper we show how we can train a regression model on generic motions for both accelerometer and gyro signals and then apply it to videos of the target activities to generate synthetic IMU data (acceleration and gyro norms) that can be used to train and/or improve HAR models. We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data. Furthermore we show that by either including a small amount of real sensor data for model calibration or simply leveraging the fact that (in general) we can easily generate much more simulated data from video than we can collect in terms of real sensor data the advantage of real sensor data can be eventually equalized.

Abstract (translated)

URL

https://arxiv.org/abs/2011.11600

PDF

https://arxiv.org/pdf/2011.11600.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot