Paper Reading AI Learner

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

2020-11-23 15:40:15
Humam Alwassel, Silvio Giancola, Bernard Ghanem

Abstract

Understanding videos is challenging in computer vision. In particular, the large memory footprint of an untrimmed video makes most tasks infeasible to train end-to-end without dropping part of the input data. To cope with the memory limitation of commodity GPUs, current video localization models encode videos in an offline fashion. Even though these encoders are learned, they are typically trained for action classification tasks at the frame- or clip-level. Since it is difficult to finetune these encoders for other video tasks, they might be sub-optimal for temporal localization tasks. In this work, we propose a novel, supervised pretraining paradigm for clip-level video representation that does not only train to classify activities, but also considers background clips and global video information to gain temporal sensitivity. Extensive experiments show that features extracted by clip-level encoders trained with our novel pretraining task are more discriminative for several temporal localization tasks. Specifically, we show that using our newly trained features with state-of-the-art methods significantly improves performance on three tasks: Temporal Action Localization (+1.72% in average mAP on ActivityNet and +4.4% in mAP@0.5 on THUMOS14), Action Proposal Generation (+1.94% in AUC on ActivityNet), and Dense Video Captioning (+0.31% in average METEOR on ActivityNet Captions). We believe video feature encoding is an important building block for many video algorithms, and extracting meaningful features should be of paramount importance in the effort to build more accurate models.

Abstract (translated)

URL

https://arxiv.org/abs/2011.11479

PDF

https://arxiv.org/pdf/2011.11479.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot