Paper Reading AI Learner

DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations

2020-11-24 08:15:53
Wenhao Wang, Shengcai Liao, Fang Zhao, Cuicui Kang, Ling Shao

Abstract

Existing person re-identification methods often have low generalization capability, which is mostly due to the limited availability of large-scale labeled training data. However, labeling large-scale training data is very expensive and time-consuming. To address this, this paper presents a solution, called DomainMix, which can learn a person re-identification model from both synthetic and real-world data, for the first time, completely without human annotations. This way, the proposed method enjoys the cheap availability of large-scale training data, and benefiting from its scalability and diversity, the learned model is able to generalize well on unseen domains. Specifically, inspired from a recent work generating large-scale synthetic data for effective person re-identification training, the proposed method firstly applies unsupervised domain adaptation from labeled synthetic data to unlabeled real-world data to generate pseudo labels. Then, the two sources of data are directly mixed together for supervised training. However, a large domain gap still exists between them. To address this, a domain-invariant feature learning method is proposed, which designs an adversarial learning between domain-invariant feature learning and domain discrimination, and meanwhile learns a discriminant feature for person re-identification. This way, the domain gap between synthetic and real-world data is much reduced, and the learned feature is generalizable thanks to the large-scale and diverse training data. Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations, which is quite promising. In addition, it achieves the current state of the art on several popular person re-identification datasets under direct cross-dataset evaluation.

Abstract (translated)

URL

https://arxiv.org/abs/2011.11953

PDF

https://arxiv.org/pdf/2011.11953.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot