Paper Reading AI Learner

Recalibration of Neural Networks for Point Cloud Analysis

2020-11-25 17:14:34
Ignacio Sarasua, Sebastian Poelsterl, Christian Wachinger

Abstract

Spatial and channel re-calibration have become powerful concepts in computer vision. Their ability to capture long-range dependencies is especially useful for those networks that extract local features, such as CNNs. While re-calibration has been widely studied for image analysis, it has not yet been used on shape representations. In this work, we introduce re-calibration modules on deep neural networks for 3D point clouds. We propose a set of re-calibration blocks that extend Squeeze and Excitation blocks and that can be added to any network for 3D point cloud analysis that builds a global descriptor by hierarchically combining features from multiple local neighborhoods. We run two sets of experiments to validate our approach. First, we demonstrate the benefit and versatility of our proposed modules by incorporating them into three state-of-the-art networks for 3D point cloud analysis: PointNet++, DGCNN, and RSCNN. We evaluate each network on two tasks: object classification on ModelNet40, and object part segmentation on ShapeNet. Our results show an improvement of up to 1% in accuracy for ModelNet40 compared to the baseline method. In the second set of experiments, we investigate the benefits of re-calibration blocks on Alzheimer's Disease (AD) diagnosis. Our results demonstrate that our proposed methods yield a 2% increase in accuracy for diagnosing AD and a 2.3% increase in concordance index for predicting AD onset with time-to-event analysis. Concluding, re-calibration improves the accuracy of point cloud architectures, while only minimally increasing the number of parameters.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12888

PDF

https://arxiv.org/pdf/2011.12888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot