Paper Reading AI Learner

Evaluation of quality measures for color quantization

2020-11-25 11:25:54
Giuliana Ramella

Abstract

Visual quality evaluation is one of the challenging basic problems in image processing. It also plays a central role in the shaping, implementation, optimization, and testing of many methods. The existing image quality assessment methods focused on images corrupted by common degradation types while little attention was paid to color quantization. This in spite there is a wide range of applications requiring color quantization assessment being used as a preprocessing step when color-based tasks are more efficiently accomplished on a reduced number of colors. In this paper, we propose and carry-out a quantitative performance evaluation of nine well-known and commonly used full-reference image quality assessment measures. The evaluation is done by using two publicly available and subjectively rated image quality databases for color quantization degradation and by considering suitable combinations or subparts of them. The results indicate the quality measures that have closer performances in terms of their correlation to the subjective human rating and show that the evaluation of the statistical performance of the quality measures for color quantization is significantly impacted by the selected image quality database while maintaining a similar trend on each database. The detected strong similarity both on individual databases and on databases obtained by integration provides the ability to validate the integration process and to consider the quantitative performance evaluation on each database as an indicator for performance on the other databases. The experimental results are useful to address the choice of suitable quality measures for color quantization and to improve their future employment.

Abstract (translated)

URL

https://arxiv.org/abs/2011.12652

PDF

https://arxiv.org/pdf/2011.12652.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot